The ecology of extinction: Population fluctuation and decline in amphibians

Article in Biological Conservation · June 2003
Impact Factor: 3.76 · DOI: 10.1016/S0006-3207(02)00302-6

CITATIONS 200
READS 345

1 author:

David M. Green
McGill University
125 PUBLICATIONS 3,387 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: David M. Green
Retrieved on: 06 July 2016
The ecology of extinction: population fluctuation and decline in amphibians

David M. Green

Redpath Museum, McGill University, 859 Sherbrooke St. West, Montreal, Quebec, Canada H3A 2K6

Received 10 September 2001; received in revised form 9 August 2002; accepted 5 September 2002

Abstract

Even among widespread species with high reproductive potentials and significant dispersal abilities, the probability of extinctions should be correlated both with population size variance and with the extent of population isolation. To address how variation in demographic characteristics and habitat requirements may reflect on the comparative risk of species decline, I examined 617 time series of population census data derived from 89 amphibian species using the normalized estimate of the realized rate of increase, \(\Delta N \), and its variance. Amphibians are demonstrably in general decline and exhibit a great range of dispersal abilities, demographic characteristics, and population sizes. I compared species according to life-history characteristics and habitat use. Among the populations examined, census declines outnumbered increases yet the average magnitudes for both declines and increases were not demonstrably different, substantiating findings of amphibian decline. This gives no support for the idea that amphibian population sizes are dictated by regimes featuring relatively rare years of high recruitment offset by intervening years of gradual decline such that declines may outnumber increases without negative effect. For any given population size, those populations living in large streams or in ponds had significantly higher variance than did populations of completely terrestrial or other stream-dwelling amphibians. This could not be related to life-history complexity as all the stream-breeding species examined have larvae and all of the wholly terrestrial species have direct development without a larval stage. Variance in \(\Delta N \) was highest amongst the smallest populations in each comparison group. Estimated local extinction rates averaged 3.1% among pond-breeding frogs, 2.2% for pond-breeding salamanders, and negligible for both stream-breeding and terrestrial direct-developing species. Recoveries slightly exceeded extinctions among European pond-breeding frogs but not among North American pond-breeding frogs. Less common species had greater negative disparities between extinctions and recoveries. Species with highly fluctuating populations and high frequencies of local extinctions living in changeable environments, such pond- and torrent-breeding amphibians, may be especially susceptible to curtailment of dispersal and restriction of habitat.

2003 Elsevier Science Ltd. All rights reserved.

Keywords: Population declines; Population variation; Extinction risk; Amphibians; Life history

1. Introduction

Population decline leading to local or complete extinction of species is explicitly or implicitly the focus of conservation initiatives and conservation research. Population decline can be considered a downward trend in numbers of individuals (Vial and Saylor, 1993) but confirming this in any species with even moderate population fluctuations is problematic. Populations of species with high potentials for increase \(r \) tend to show fluctuations and should therefore have increased risk of chance extinction at low population sizes (Belovsky, 1987). But, in some cases, fluctuating population sizes are not necessarily tightly coupled with the chance of extinction (Blaustein et al., 1994a; Schoener and Spiller, 1992) and thus it is the interplay of the demographic characteristics of populations with changes in their particular environments, coupled with the interconnectivity of populations over landscapes, that determines how populations will behave and survive (Bolger et al., 1991; Opdam et al., 1993; Hanski, 1998; Marsh and Trenham, 2001). The probability of local extinctions should be correlated both with high variance in population size and with habitat alterations that have severed or attenuated dispersal between local populations (Thrall et
al., 2000). Although these effects have been shown in particular cases (Gibbs, 1998; Cooper and Walters, 2002), their generality has not been thoroughly examined.

There is real concern over broad scale declines, for instance, in numbers of amphibians (Houlahan et al., 2000; Alford and Richards, 1999). Investigations into the plight of amphibian populations have been directed towards discerning decreases in numbers of individuals within populations and by documenting possible proximate causes (Blaustein et al., 1994a; Corn, 2000; Kiesecker et al., 2001). Emerging infectious diseases (Cunningham et al., 1996; Lips, 1999; Morell, 1999), parasitic infections (Sessions and Ruth, 1990; Johnson et al., 1999), ultra-violet radiation (Blaustein et al., 1994b), chemical pollutants (Berrill et al., 1997; Bonin et al., 1997; Harte and Hoffman, 1989), introduced predators (Liss and Larson, 1991; Bradford et al., 1993; Morgan and Buttemer, 1996), habitat destruction (Blaustein et al., 1994a; Green, 1997a; Corn, 2000), and climate change (Pounds et al., 1999; Kiesecker et al., 2001) have all been touted as explanations for declines in amphibian populations. Each is plausible, all are likely, but none is mutually exclusive nor apt to be the single underlying cause.

The condurum is that amphibian declines occur neither everywhere nor among all species. In some amphibians, declines have not been detected (Hairson and Wiley, 1993) and in others, trends cannot be detected at all (Pechmann et al., 1991). Some have argued (Pechmann and Wilbur, 1996, Alford et al., 2001) that declines in amphibian abundances may be more apparent than real. Alford and Richards (1999) proposed a model whereby fluctuating amphibian populations are dictated by the occasional year of high recruitment offset by intervening years in which reproductive success is low. Therefore, population declines could outnumber population increases without indicating overall decline in the population’s status. The corollary to this is that the average magnitude of the declines should be less than the average magnitude of the increases. But this particular model may not be general (Houlahan et al., 2001) and, as stated by Alford et al. (2001), more detailed analysis is required.

Understanding the causes of population declines in any group of organisms is likely to be hampered if the ecology of the organisms themselves is insufficiently considered. Amphibians are often depicted as particularly susceptible to the adverse effects of habitat alteration. They are routinely stereotyped as small and damp, and possessing only limited powers of dispersal. It is true that most of the nearly 5000 species of amphibians are small and damp yet they also are abundant, adaptable, and resilient. Amphibians exhibit a great range of dispersing abilities (Marsh and Trenham, 2001) and demographic characteristics (Stebbins and Cohen, 1995). Their populations cannot all be presumed to behave in a similar fashion when confronted with environmental dangers.

Because of the stochasticity entailed in extinction events, the variance in population change must be accounted for in order to predict susceptibility to decline and population loss. For example, it may be predicted that pond-breeding frogs which disperse widely should have better capacity for maintaining cohesion within metapopulations but, on the other hand, may have more need to do so because they have greatly fluctuating populations. Populations of species with limited dispersal abilities may or may not be more at risk of decline and/or extinction than similarly-sized populations of highly fecund, dispersing species. Is population size variance dependent upon the relative stability of habitats, particularly breeding habitats, or is it correlated with recruitment or fecundity? To address how variation in demographic characteristics and habitat requirements may reflect on the comparative risk of decline in amphibians, and to comprehend the relative degrees of variance among changes in amphibian population sizes, I examined 617 time series of population census data derived from 89 amphibian species, largely from North America and Europe. I considered if species with expected high intrinsic rates of increase, notably those pond-breeding amphibian species with biphasic life-histories and the highest fecundities, have more highly fluctuating populations and higher rates of local extinctions. Specifically I predicted that populations of direct-developing species in stable terrestrial habitats would exhibit decreased population variance relative to pond-breeding amphibians subject to greater demographic and environmental stochasticity.

2. Methods

2.1. Data sets

The data were amassed from published sources as listed in the North American Amphibian Monitoring Program (NAAMP) database and the dataset used by Houlahan et al. (2000), as well as unpublished sources as used also by Houlahan et al. (2000). I only looked at time series of 5 years or greater duration. In cases where the census values were given as densities rather than as counts or estimates of actual animal numbers, I multiplied the density values by the sizes of the areas studied, where available, to derive counts. Population estimates which were obviously gross approximations, sporting values rounded to the nearest 100 or 1000, were eliminated. The majority of the data were not population size estimates with high degrees of confidence. For the most part, they were merely counts of numbers of individuals. In some instances, counts of breeding individuals may
further underestimate population size as not all individuals may breed each year (Trenham et al., 2000). Nevertheless, as I was interested in population change rather than precise population size, and because capture probabilities within data sets can be assumed to be more or less consistent from census to census, count data were appropriate for my purposes.

I divided the species represented into different groups for comparison (Table 1) based on life-history (Duellman and Trueb, 1986; Kuzmin, 1999; Maeda and Matsui, 1989; Petranka, 1998; Stebbins and Cohen 1995; Thorn, 1968; Tyler, 1989; Wright and Wright, 1949). Species with biphase life histories (aquatic larvae and terrestrial adults) were assorted into pond-breeding \((n=549)\) vs. stream-breeding species \((n=24)\). Species with uniphase life histories were divided into terrestrial direct-developing species \((n=43)\), and permanently aquatic, paedomorphic species \((n=1)\). There were sufficient numbers of data sets among pond-breeders to enable me to further divide them into frogs \((n=454)\) vs. salamanders \((n=95)\) and individually characterize \textit{Bufo bufo} (Common toad; \(n=93\)), \textit{B. calamita} (Natterjack; \(n=36\)), \textit{Rana temporaria} (Common frog; \(n=139\)), \textit{R. arvalis} (Moor frog; \(n=35\)), \textit{R. sylvatica} (Wood frog; \(n=20\)), and \textit{Hyla arborea} (European treefrog; \(n=22\)). Based upon the outcome of the analysis of stream-dwelling species, I further divided them into logical groups based upon habitat. I did not attempt any phylogenetically based comparisons using independent contrasts beyond considering frogs and salamanders separately in some cases. Direct-development amongst amphibians may not necessarily always be a derived condition (Bogart, 1981) and the evolution of that character was not the focus of this analysis.

2.2. Statistical measures

I calculated the mean population size and its variance for each time series. I correlated population size variance against mean population size for each comparison group. I compared the slopes of the resultant regressions by testing for homogeneity of slope after linearizing the relationships by taking the logarithms of all data. Relationships can be directly compared provided their slopes are not significantly different. Any comparison group with a relationship between mean population size and variance that was significantly different in slope from the other groups was further analyzed to determine the cause of the difference.

I measured change in population size using \(\Delta N\) (Houlahan et al. 2000), a normalized estimate of the realized rate of increase, \(R\):

\[
\Delta N = \log(N + 1)_t - \log(N + 1)_{t-1}.
\]

\(\Delta N\) is positive when populations increase and negative when they decline. Average \(\Delta N\) and its variance, \(V_{\Delta N}\), were calculated for each time series to give a measure of that population’s trend. For each time series, I also calculated a coefficient of variation (CV), which is the standard deviation of population size divided by the mean, as used by Marsh and Trenham (2001) and Welsh and Droegé (2001). The CV, however, has little biological significance and assumes, incorrectly, that each census value is independent. A further measure of population size change, \(r_t\) (Turchin, 1999), which is equal to \(\ln(N_{t+1}/N_t)\), cannot be calculated for a population recovery following a crash to zero and was not used.

Table 1

Summary of the direction of population changes, with percentages, for over 4,482 census intervals derived from 617 time series of amphibian population census data\(^a\)

<table>
<thead>
<tr>
<th>Census intervals</th>
<th>Decreases</th>
<th>Increases</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4482</td>
<td>2270 (50.6%)</td>
<td>2020 (45.1%)</td>
</tr>
<tr>
<td>Pond breeding species</td>
<td>4031</td>
<td>2058 (51.1%)</td>
<td>1804 (44.8%)</td>
</tr>
<tr>
<td>Anura</td>
<td>3319</td>
<td>1681 (50.6%)</td>
<td>1502 (45.3%)</td>
</tr>
<tr>
<td>\textit{Bufo bufo}</td>
<td>758</td>
<td>394 (52.0%)</td>
<td>360 (47.5%)</td>
</tr>
<tr>
<td>\textit{Bufo calamita}</td>
<td>396</td>
<td>206 (52.0%)</td>
<td>164 (41.4%)</td>
</tr>
<tr>
<td>\textit{Hyla arborea}</td>
<td>122</td>
<td>51 (41.8%)</td>
<td>54 (44.3%)</td>
</tr>
<tr>
<td>\textit{Rana arvalis}</td>
<td>210</td>
<td>88 (41.9%)</td>
<td>98 (46.7%)</td>
</tr>
<tr>
<td>\textit{Rana sylvatica}</td>
<td>121</td>
<td>74 (61.2%)</td>
<td>47 (38.8%)</td>
</tr>
<tr>
<td>\textit{Rana temporaria}</td>
<td>390</td>
<td>197 (50.2%)</td>
<td>164 (41.4%)</td>
</tr>
<tr>
<td>all other frogs</td>
<td>722</td>
<td>371 (51.4%)</td>
<td>319 (44.2%)</td>
</tr>
<tr>
<td>Caudata</td>
<td>712</td>
<td>377 (52.9%)</td>
<td>302 (42.4%)</td>
</tr>
<tr>
<td>Stream breeding species</td>
<td>149</td>
<td>72 (48.3%)</td>
<td>74 (49.7%)</td>
</tr>
<tr>
<td>Terrestrial direct-developing species</td>
<td>296</td>
<td>140 (47.3%)</td>
<td>142 (48.0%)</td>
</tr>
<tr>
<td>Aquatic paedomorphic species</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

I compared the range and magnitudes of the values of ΔN for the different groups to examine if declines out-numbered increases and/or differed in magnitude, as had been predicted by Alford and Richards (1999). However, I did not seek to establish if there was an overall decline in amphibian abundance, as was investigated by Houlanah et al. (2000) and discussed by numerous other authors (Pechmann et al., 1991; Blaustein et al., 1994a; Alford and Richards, 1999). Rather, I concentrated on measures of variance in population size and population change, i.e. $V_{\Delta N}$, to establish and compare levels of population fluctuation and thereby investigate the likelihood of population persistence. I compared the variance in population size, coefficient of variation, and $V_{\Delta N}$ against mean population size for the different life history groups.

It may be expected that larger populations should exhibit decreased variance in ΔN. To determine whether variance in population change was related to population size, I correlated $V_{\Delta N}$ against mean population size for each comparison group. I then examined $V_{\Delta N}$ among the groups, restricting the analysis to populations with mean size < 250, i.e. within the range where demographic stochasticity may be expected to play a role (Lande, 1988, 1993; Burgman et al., 1993).

I estimated local extinction rates for each of the comparison groups and the six individually examined species by counting the number of occasions when any population census fell to zero and dividing that count by the total number of census intervals (= the number of ΔN values) to arrive at a “crash rate”. Repeated values of 0 were not included. Similarly, I determined local recovery rates by counting the number of occasions when there was a positive census count after a 0. As local crash and recovery rates, through direct examination, were no greater than about 3%, no attempt was made to calculate them on data sets with fewer than 100 intervals.

3. Results

3.1. Changes in population size

Among the 617 time-series, there were 4482 census intervals in total. Declines (50.6% of changes) overall outnumbered increases (45.1%), in accordance with the general downward trend detected by Houlanah et al. (2000), however this result is greatly influenced by the preponderance of pond-breeding frogs in the data set. Both the terrestrial direct developers and stream-breeding species exhibited more increases than decreases; their populations increased 48.0 and 49.7% of the time, respectively, versus 47.3 and 48.3% for declines. Pond-breeding species increased 44.8% of the time and decreased 51.1% of the time. Rarely did populations remain constant in size from one census to the next: only 4.1% of changes overall. In general, terrestrial direct developers more often showed no change (4.7% of intervals) compared to pond-breeding species (4.2%) and stream-breeding species (2.0%). The greatest stability was seen in H. arborea, which did not change population size 13.9% of the time and increased (44.3%) more often than it decreased (41.8%). R. sylvatica, however, always underwent change, mainly to decrease (61.2%).

3.2. Population size variance

Predictably, population size variance was highly correlated with mean population size (Fig. 1) according to allometric, power relationships with R^2 values around 0.9. The slopes of the lines (exponents) of the initial comparison groups were not homogeneous. Slopes for pond-breeding frogs, pond-breeding salamanders, and direct developers, equaling 1.70, 1.76 and 1.76, respectively, were not significantly different from each other ($P > 0.05$) but the slope of the relationship for stream-breeders, at 1.92, was steeper than for other groups and was significantly different from the pond-breeding frogs ($P = 0.026$). The stream-breeding species thus appeared either to be obeying a different rule from other amphibians or else comprised a group of samples that was not a natural assemblage. Some of the stream-breeding populations inhabited small streams (i.e. trickles and rivulets) whereas others, with the largest population sizes, were found in large streams (i.e. rivers and torrents). Once divided into these two sub-categories, the slopes of the relationships for species breeding in small streams ($y = 0.53x^{1.51}$; $n = 16$) and large streams ($y = 10.30x^{1.43}$; $n = 8$) were not significantly different from each other, nor from the other comparison groups ($P > 0.05$) and the analysis could proceed.

Although the slopes of the regressions could be homogeneous, population variance for any given population size was significantly different between certain groups of species, as indicated by the respective y-intercept values for the regression lines: 10.30 for large-stream breeding species, 1.71 for pond-breeding frogs, 1.01 for pond-breeding salamanders, 0.53 for small-stream breeding species, and 0.29 for direct developers. Thus for a given average population size, the large-stream-breeding species and then the pond-breeding species exhibited higher levels of population variance than did either the terrestrial direct-developing species or the remaining stream-breeding species.

For populations of pond breeding species, the coefficient of variation averaged 0.750 ± 0.037 (S.E.), slightly but not significantly ($P = 0.803$) higher for frogs (0.757 ± 0.041) than for salamanders (0.721 ± 0.089). The average values for stream breeding species (0.443 ± 0.104) and terrestrial direct-developing species...
were considerably and significantly lower than for the pond-breeding species \((P < 0.001)\), but not significantly different from each other \((P = 0.541)\). The coefficient of variation for species in small streams \(\text{average } = 0.384 \pm 0.049\) and species in large streams \(\text{average } = 0.560 \pm 0.101\) were not significantly different \((P = 0.087)\).

The mean values of \(\Delta N\) were slightly negative in pond-breeding frogs \((-0.018 \pm 0.007)\), pond-breeding salamanders \((-0.018 \pm 0.013)\), and stream-breeder \((-0.033 \pm 0.030)\), and not significantly different one from each other \((P < 0.01)\). However, among the stream-breeding species, those populations in large streams averaged a decline in population size according to mean \(\Delta N\) \((-0.113 \pm 0.080)\) whereas those populations in small streams averaged a slight increase \((0.007 \pm 0.011)\). Among the pond breeding species, only \(Rana arvalis\) showed a significant tendency towards population increase \((\text{mean } \Delta N = 0.126 \pm 0.042)\). The average \(\Delta N\) calculated for terrestrial, direct-developing species, whether frogs or salamanders, was slightly positive \((0.007 \pm 0.011)\), frogs faring slightly better than salamanders \((\text{mean } \Delta N = 0.016 \pm 0.027 \text{ compared to } 0.002 \pm 0.009)\).

The distribution of \(\Delta N\) values for all groups of species examined (Fig. 2) was symmetrical around a median class of values centered on zero. The range of \(\Delta N\) values (Fig. 2) was much the greatest for pond-breeding species, especially the frogs \((\text{minimum } = -2.634, \text{ maximum } = 2.340)\) and then the salamanders \((\text{range } = -1.934 \text{ to } 1.661)\), followed by the stream-breeding species overall \((\text{range } = -2.137 \text{ to } 0.477)\) and then the terrestrial, direct-developing species \((\text{range } = -0.903 \text{ to } 0.727)\). The smallest range of values,
however, belonged to those species breeding in small streams (range = 0.802 to 0.454). The pond-breeding frogs had the highest variance in ΔN (mean $V_{\Delta N} = 0.306 \pm 0.022$ S.E.), followed by pond-breeding salamanders (mean $V_{\Delta N} = 0.158 \pm 0.021$) and stream-breeding species [mean $V_{\Delta N} = 0.106 \pm 0.044$ (small stream species mean $V_{\Delta N} = 0.062 \pm 0.016$, large stream species mean $V_{\Delta N} = 0.194 \pm 0.129$); Fig. 3a]. The terrestrial direct-developing species had the lowest variance in ΔN on average (mean $V_{\Delta N} = 0.045 \pm 0.007$), lower than the single time-series from a paedomorphic species ($V_{\Delta N} = 0.051$). The pond-breeding frogs, pond-breeding salamanders and terrestrial direct-developing species were significantly different from each other in terms of $V_{\Delta N}$ ($P < 0.001$) but the stream-breeding species as a whole were not significantly different from either pond-breeding salamanders or direct-developing species ($P = 0.29$ and $P = 0.19$, respectively), likely due to the differences between species breeding in small streams (mean $V_{\Delta N} = 0.062 \pm 0.016$; $n = 16$) versus species breeding in large streams (mean $V_{\Delta N} = 0.194 \pm 0.129$; $n = 8$). Tested separately, $V_{\Delta N}$ of species breeding in small streams was significantly different from $V_{\Delta N}$ of pond-breeding frogs ($P = 0.039$) but not significantly different from pond-breeding salamanders ($P = 0.060$) or direct-developing species ($P = 0.292$). Conversely, $V_{\Delta N}$ of species breeding in large streams was not significantly different from $V_{\Delta N}$ of pond-breeding frogs ($P = 0.514$) or pond-breeding salamanders ($P = 0.652$) but significantly different from direct-developing species ($P = 0.010$).

Among those pond-breeding anuran species examined individually, $H. arborea$, $R. temporaria$, $R. sylvatica$ and $B. calamita$ had mean values of $V_{\Delta N}$ similar to
the overall average for the group (Fig. 3b). The exceptions were *R. arvalis*, which had relatively high levels of population variance, and *B. bufo*, which was comparatively low. European pond-breeding species of frogs and salamanders exhibited less variance in ΔN compared to their North American counterparts ($V_{\Delta N} = 0.296 \pm 0.031$ for frogs and 0.131 ± 0.021 for salamanders) compared to their North American counterparts ($V_{\Delta N} = 0.353 \pm 0.058$ for frogs and 0.229 ± 0.073 for salamanders) but the differences were not significant ($P < 0.01$).

The significance of these overall comparisons is compromised because variance in ΔN was considerably damped in large populations (Fig. 4). Most of the populations of the pond-breeding anuran, *B. bufo*, in particular, were very large (mean = 1382 ± 145 individuals; Fig. 3b), as were all estimates of abundance for the torrent-dwelling Mallorcan midwife toad, *Alytes muletensis* ($n = 5$). *A. muletensis* had populations averaging 1885 ± 993 individuals, with a mean $V_{\Delta N}$ of 0.020.

Fig. 3. Variance in ΔN (mean and standard error) for amphibian populations. (A) Amphibian species of different life histories. Pond-breeding frogs, pond-breeding salamanders, and terrestrial, direct-developing species were significantly different from each other ($P < 0.01$). The stream-breeding species taken together had a great diversity of population sizes and were not significantly different in variance in ΔN from either pond-breeding salamanders ($P = 0.29$) or terrestrial direct-developing species ($P = 0.19$). Those species breeding in small streams were not significantly different from terrestrial direct-developing species ($P = 0.29$) or pond-breeding salamanders ($P = 0.06$), and significantly different from pond breeding frogs ($P = 0.04$). Conversely, those species breeding in large streams were significantly different from terrestrial direct-developing species ($P = 0.01$) and not significantly different from pond-breeding salamanders ($P = 0.65$) or pond breeding frogs ($P = 0.51$). (B) Six pond-breeding anurans with $n \geq 20$. Four of the six species cluster around typical values of population size and variance for pond-breeding frogs. *Rana arvalis*, however, exhibits an unusually high variance whereas *Bufo bufo* exhibits an unusually low variance.
Large population sizes were the exception, however. Because of the damping effect of large population size, I re-analyzed the data restricting the comparison of $V_{\Delta N}$ between life-history groups to populations with mean sizes under 250 individuals (Fig. 5). The restriction on population size in the analysis had the effect of eliminating from the set of stream-breeding species six of the eight data series for species dwelling in large streams but none of the data for species dwelling in small streams. I therefore used only the value for species dwelling in small streams, previously calculated as mean $V_{\Delta N}=0.045 \pm 0.007$, in order make a comparison. Population estimates for terrestrial, direct-developing species were all under 250 individuals and thus the previously calculated value of mean $V_{\Delta N}=0.372 \pm 0.026$ was also used. Mean $V_{\Delta N}$ for pond-breeding frog populations under a mean size of 250 was 0.372 ± 0.026 ($n=306$) and for pond-breeding salamanders it was 0.164 ± 0.025 ($n=63$). These were significantly different ($P < 0.001$). Mean $V_{\Delta N}$ among the small-stream dwellers was found to significantly different from both pond-breeding frogs ($P=0.006$) and salamanders ($P=0.049$) but not from the terrestrial direct developers ($P=0.292$). The terrestrial direct developers were likewise found to significantly different from both pond-breeding frogs and salamanders ($P < 0.001$). Only three populations of $B. calamita$ and one population of $H. arborea$ averaged more than 250 individuals and therefore estimates of mean $V_{\Delta N}$ in those species changed little. When populations >250 individuals were excluded, estimates of $V_{\Delta N}$ in $R. temporaria$ (mean $V_{\Delta N}=0.411 \pm 0.047$; $n=104$), $R. arvalis$ (mean $V_{\Delta N}=0.686 \pm 0.120$; $n=30$) and $R. sylvatica$ (mean $V_{\Delta N}=0.345 \pm 0.101$; $n=13$) rose considerably. In $B. bufo$, however, there was a reduction in variance (mean $V_{\Delta N}=0.092 \pm 0.020$; $n=18$) when considering only those population <250 individuals.

Table 2
Crash (population count=0) and recovery rates for amphibian populations

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of species</th>
<th>Population changes</th>
<th>Crashes</th>
<th>Recoveries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of species</td>
<td>Number</td>
<td>Rate</td>
<td>Number</td>
</tr>
<tr>
<td>Pond-breeding species</td>
<td>65</td>
<td>10 320</td>
<td>311</td>
<td>0.03</td>
</tr>
<tr>
<td>Anura</td>
<td>47</td>
<td>3008</td>
<td>93</td>
<td>0.031</td>
</tr>
<tr>
<td>Europe</td>
<td>12</td>
<td>2290</td>
<td>74</td>
<td>0.032</td>
</tr>
<tr>
<td>Bufo bufo</td>
<td>1</td>
<td>758</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bufo calamita</td>
<td>1</td>
<td>396</td>
<td>13</td>
<td>0.033</td>
</tr>
<tr>
<td>Rana temporaria</td>
<td>1</td>
<td>615</td>
<td>36</td>
<td>0.059</td>
</tr>
<tr>
<td>Rana arvalis</td>
<td>1</td>
<td>210</td>
<td>17</td>
<td>0.081</td>
</tr>
<tr>
<td>Hyla arborea</td>
<td>1</td>
<td>122</td>
<td>4</td>
<td>0.033</td>
</tr>
<tr>
<td>all other species</td>
<td>7</td>
<td>189</td>
<td>4</td>
<td>0.021</td>
</tr>
<tr>
<td>North America</td>
<td>29</td>
<td>590</td>
<td>19</td>
<td>0.032</td>
</tr>
<tr>
<td>Rana sylvatica</td>
<td>1</td>
<td>121</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>all other species</td>
<td>28</td>
<td>469</td>
<td>19</td>
<td>0.041</td>
</tr>
<tr>
<td>Caudata</td>
<td>18</td>
<td>712</td>
<td>16</td>
<td>0.022</td>
</tr>
<tr>
<td>Europe</td>
<td>6</td>
<td>503</td>
<td>11</td>
<td>0.022</td>
</tr>
<tr>
<td>North America</td>
<td>10</td>
<td>185</td>
<td>5</td>
<td>0.027</td>
</tr>
<tr>
<td>Stream-breeding species</td>
<td>10</td>
<td>149</td>
<td>1</td>
<td>0.007</td>
</tr>
<tr>
<td>Terrestrial direct-developing species</td>
<td>13</td>
<td>296</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3. Local extinction and recovery

The population crash rate was 0.031 among pond-breeding frogs ($n=3008$ census intervals), 0.022 for pond-breeding salamanders ($n=712$), and negligible for both stream-breeding and terrestrial direct-developing species (Table 2). The European ($n=2,290$) and North American ($n=590$) pond-breeding frogs both had a crash rate of 0.032. However, whereas recoveries (rate=0.034) slightly exceeded crashes among European pond-breeding frogs, they were decidedly less than crashes among North American pond-breeding frogs (rate=0.020). Neither $B.$...
bufo \((n=758)\) nor \(R.\ sylvatica\ \(n=121)\) exhibited any crashes whereas \(R.\ temporaria\) with a rate of 0.059 \((n=615)\), and \(R.\ arvalis\) with a rate of 0.081 \((n=210)\), were at the high end of the scale. The crash rate of 0.033 in \(H.\ arborea\) closely agreed with local extinction rates recorded by Carlson and Edenhamn (2000). In the main, recovery rates were at levels that matched crashes (Table 2). Despite its high crash rate, \(R.\ arvalis\) had an even higher recovery rate of 0.124. The greatest negative disparities between crashes and recoveries were among the more rarely sampled pond-breeding frogs from both Europe and North America and among pond-breeding salamanders (Table 2).

4. Discussion: population variance and population persistence

Contrary to the expectations of Alford and Richards (1999), the distribution of \(\Delta N\) values was not consistent with any particular pattern of population rises and declines within populations. Although populations rarely remained precisely the same size, most of the time they changed little from one census to the next. Large increases and large decreases were both rare. Alford and Richards (1999) had predicted that amphibian populations are dominated by few, but large positive \(\Delta N\) values amidst many, but small negative \(\Delta N\) values. Corroborating Houlahan et al. (2001), my analysis shows that this is not the general case. Declines (i.e., \(\Delta N\) is negative) outnumber increases (i.e., \(\Delta N\) is positive) yet the average magnitudes for each are not different. The indication is that the pattern proposed by Alford and Richards (1999) is not general and that amphibian populations are, overall, declining.

The heightened levels of \(V_{\Delta N}\) detected among smaller populations of amphibians may be evidence of the effects of demographic stochasticity upon population size. Demographic stochasticity should increase population size variance at effective population sizes, \(N_e\), less

![Fig. 5. Variance in \(\Delta N\) versus mean population size for populations of amphibians under 250. Mean \(V_{\Delta N}=0.372\pm0.026\) for pond-breeding frogs \((n=306)\), \(0.164\pm0.025\) for pond-breeding salamanders \((n=63)\), \(0.062\pm0.016\) for small-stream breeding species \((n=16)\) and \(0.045\pm0.007\) for terrestrial direct-developing species \((n=43)\).](image-url)
than 100 (Lande, 1988, 1993; Burgman et al., 1993) and for many pond-breeding amphibian populations, \(N_c \) is considerably smaller than the census population size (Vucetich et al., 1997; Vucetich and Waite, 1998; Scribner et al., 1997). Among the 549 populations of pond-breeding species examined here, 48.8% averaged fewer than 100 censused individuals and 78.3% averaged fewer than 500 individuals. Demographic stochasticity is predicted be higher for a given census population size among species with fluctuating populations compared to species with comparatively long lives and low fecundities in stable populations (Kokko and Ebenhard, 1996). This is borne out by comparison of pond-breeding amphibian species with direct-developing and paedomorphic species.

My analysis indicates that high population variance is not necessarily causally related to life-history complexity. Species with complex life histories are expected to have complex population dynamics (Wilbur, 1980) and populations of assorted amphibian species with biphasic life histories have been seen to fluctuate, sometimes over orders of magnitude (Banks and Beebee, 1988; Berven, 1995; Alford and Richards, 1999). Yet among the large number of populations I examined, for any given population size those amphibian populations living in large streams and ponds had the highest population variance. The most stable populations were those inhabiting small streams, trickles and rivulets, or which were wholly terrestrial. This is not related to the presence or absence of a complex life-history as all the stream-breeding species examined have indirect development with larvae whereas the wholly terrestrial species do not. Furthermore, the observed differences in population size variation have no taxonomic bias either, especially for frogs versus salamanders. Plethodontid salamander species, with or without larvae, have less fluctuating populations than do most hyloid, ranid, or bufonid frogs, and they also fluctuate significantly less than salamander or ambystomatid salamanders. That same relative population stability is also true for frogs of the genus Eleutherodactylus and other species of both frogs and salamanders with terrestrial, direct development. Although Hairston (1987) stated that salamanders, in general, have stable populations, it is evident this stability applies to terrestrial and stream-breeding species not to pond-breeding species, regardless of taxonomic group or life-history complexity. Variance in population size appears to be a function of the stability of the immediate environment.

Certain of the species examined are abundant, widespread and secure throughout their ranges but have differing dynamics of population size. Populations of *B. bufo*, the common toad of Europe, are large compared to other species and its population size variance, even among its smaller populations, is relatively low for a pond-breeding species. *R. sylvatica* has a local extinction rate of zero, as reported previously by Berven (1995). However, population stability is not required for persistence. *R. arvalis*, exhibits a very high population variance but its estimated recovery rate is greater than its estimated rate of local extinction. Whereas previous authors had recorded no local extinctions in *B. calamita*, (Sinsch, 1997) or *R. temporaria* (Meyer et al., 1998), they do in fact appear to have significant local extinction rates, matched by recoveries. Species such as *B. bufo* and *R. temporaria* may have adapted themselves particularly well to human-altered landscapes (Beebee and Griffiths, 2000) in part due to their dispersal abilities and demographic characteristics. Other, less common species of pond-breeding frogs, for which there were not enough populations in the data set to characterize individually, differed from the six common species in having collectively a much higher crash rate than recovery rate. Therefore, as expected for a thriving species (Sjögren, 1991; Hanski, 1999), local population extinctions, at whatever level, are counteracted by recolonizations made possible by dispersal. Some amphibians, particularly those which breed in temporary ponds, require complex habitats. Numerous pond-breeding amphibians have been demonstrated to have considerable abilities to disperse (Ash, 1997; Dupuis, 1997; Waldick, 1997; Marsh and Trenham, 2001; Reimchen, 1991; Schlupp and Podloucky, 1994). But their evident reliance upon dispersal should render pond breeding species prone to the effects of permanent habitat fragmentation. Pond-breeding, forest-dependent amphibian species, such as *R. sylvatica* and the spotted salamander, *Ambystoma maculatum*, have been shown to disappear from progressively more fragmented habitats which leave the strictly terrestrial red-backed salamander, *Plethodon cinereus*, unaffected (Gibbs, 1998).

Habitat fragmentation is widely and rightly invoked in the decline of biodiversity (Harrison and Bruna, 1999; Fischer, 2000). Its effects are frequently considered in terms of inbreeding depression and reduction of genetic variability in small, isolated populations (Hitchings and Beebee, 1997; Young and Clarke, 2000; Dudash and Fenster, 2000), which leads to unadaptability in the face of environmental change and thus, in the long run, to reduced population viability and local extinction. The likelihood that this will happen depends also upon population size fluctuation (Vucetich and Waite, 1999) and dispersal (Gilbert et al., 1998), especially when population decay is rapid (Gaggiotti and Smouse, 1996). Amphibians exhibit a great range of dispersing abilities (Stebbins and Cohen, 1995). Pond-breeding anurans of all sorts disperse widely as juveniles (Marsh and Trenham, 2001), which has been demonstrated to be important in maintaining populations (Sinsch, 1997; Seburn et al., 1997; Pope et al., 2000; Smelitsch, 2000). Red-legged frogs, *R. aurora*, are
reported to disperse up to 2.4 km in a year (Hayes et al., 2001). Both, \textit{R. sylvatica} and Pacific treefrogs, \textit{H. regilla}, can move 2.5 km/year (Berven and Grudzien, 1990; Reimchen, 1991), and \textit{H. arborea} can move up to 12.6 km/year (Stumpel and Hanekamp, 1986). \textit{R. lessonae} have been marked and then recaptured up to 15 km away (Turner, 1992). Terrestrial, direct-developing salamanders, though, may be extremely sedentary and territorial (Mathis, 1989; Thurow, 1976; Welsh and Droge, 2001). Thus the pond-breeding species should have better capacity for maintaining cohesion within metapopulations but, with their complex habitat requirements, may have more need to do so because of their more greatly fluctuating populations. Without the effect of rescue from neighboring populations, a species with a high turnover of local populations and dependent upon dispersal for its persistence should suffer greater cumulative extinctions of local populations in fragmented landscapes regardless of any eventual loss of genetic variation.

One of the puzzles of population declines among amphibians is that they have also occurred in apparently undisturbed sites and among highly fecund species (Blaustein et al., 1994a; Corn, 2000; Alford and Richards; 1999), those very species presumed to be least affected by habitat alteration. Highly fecund pond-breeding amphibians fluctuate in population size to a great extent, correlated with high rates of local population extinctions. Yet not all pond-breeding species of amphibians are widespread. Species with restricted or fragmented ranges within the genus \textit{Bufo} in North and Central America, for example, include \textit{B. houstonensis}, \textit{B. baxteri}, \textit{B. periglenes}, \textit{B. canorus}, \textit{B. exsul}, and \textit{B. californicus} and all of these species are either endangered or recently gone extinct. The conclusion is that curtailment of recolonizations in an obligately dispersing species with highly fluctuating populations and high frequencies of local extinctions, such pond-breeding amphibians, is likely to be affected rapidly and catastrophically by habitat fragmentation.

Acknowledgements

I am grateful to J. Houlahan for use of the data he and his colleagues have amassed and to B. Schmidt, T.R. Halliday, J. Irwin, J. Houlahan, M. Lannoo, H.B. Shaffer, W. Gibbons, and M.A. Smith for discussions on the topic and/or comments on the manuscript. This work was supported by an NSERC Canada research grant.

References

